

Edited by VINCENT T. ANDRIOLE

THE QUINOLONES

Third Edition

To my family who have supported and encouraged me always and in everything.

To my colleague, Susan Marino, who has assisted me in all professional activities.

THE QUINOLONES

Third Edition

Edited by

VINCENT T. ANDRIOLE

Yale University School of Medicine

San Diego

ACADEMIC PRESS

London

Boston

New York

Sydney

Tokyo

Toronto

This book is printed on acid-free paper. (∞)

Copyright © 2000 by ACADEMIC PRESS

All Rights Reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

Academic Press *a Harcourt Science and Technology Company* 525 B Street, Suite 1900, San Diego, California 92101-4495

http://www.academicpress.com

Academic Press Limited Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK

Library of Congress Catalog Card Number: 00-106606

International Standard Book Number: 0-12-059517-6

PRINTED IN UNITED STATES OF AMERICA

00 01 02 03 04 05 SB 9 8 7 6 5 4 3 2 1

CONTENTS

	Contributors	xv
	Preface	xix
1	The Quinolones: History and Overview	
	Peter Ball	
	Introduction	2
	Structure–Activity Relationships (SARs)	3
	Antibacterial Activity	6
	Mode of Action	6
	Spectrum of Activity	6
	Bacterial Resistance to Fluoroquinolones	8
	Clinical Pharmacology	9
	Penetration into Respiratory Tissues	10
	Elimination Pathways	11
	Pharmacodynamics of Quinolones	12
	Clinical Uses	12
	Urinary Tract Infections	12
	Sexually Transmitted Diseases	13
	Respiratory Infections	13
	Gastrointestinal Infections	14
	Skin and Soft Tissue Infections	15
	Bone Infections	15
	Neutropenic Cancer Patients	16
	Prophylaxis	16
	Pharmacoeconomic Aspects of Fluoroquinolone Usage	16
	Use of Fluoroquinolones in Pediatrics	17
	Adverse Drug Reactions	19

Contents

Interactions with Other Drugs	22
Interactions Reducing Absorption	22
Metabolic and Inhibitory Interactions	23
Conclusion	23
References	24

2 Chemistry and Mechanism of Action of the Quinolone Antibacterials

Katherine E. Brighty and Thomas D. Gootz

Introduction	
Structural and Historical Background	
General Structural Features of the Quinolones	35
First-Generation Quinolones	36
Second-Generation Quinolones	38
Third- and Fourth-Generation Quinolones	42
In Vitro Potency	43
In Vivo Activity	51
Selectivity: Activity against Mammalian Topoisomerase II	
and Genetic Toxicity	53
Chemical Properties	55
Future Directions	
Compounds Lacking the C-6 Fluorine	57
2-Pyridones	59
Alteration of Primary Enzymatic Target	60
Mechanism of Action	61
Replication of DNA	61
Bacterial Topoisomerases	63
Topoisomerase Sensitivity to Fluoroquinolones	71
Killing of Bacterial Cells by Fluoroquinolones	75
Conclusion	
References	82

3 Comparative In-Vitro Properties of the Quinolones

Ian Phillips, Anna King, and Kevin Shannon

Introduction	99
Gram-Negative Aerobes	102
Enterobacteriaceae	102
Other Gram-Negative Aerobes	107
Gram-Positive Aerobes	117
Anaerobes	125
Miscellaneous Organisms	130

Conclusion	132
References	132

4 Bacterial Resistance to Quinolones: Mechanisms and Clinical Implications

Thilo Köhler and Jean-Claude Pechère

Introduction	140
Mechanisms of Quinolone Resistance	140
Gram-Negative Bacteria	
Escherichia coli	140
Salmonella spp.	142
Klebsiella spp.	143
Pseudomonas aeruginosa	143
Neisseria gonorrhoeae	145
Campylobacter spp.	145
Helicobacter pylori	145
Miscellaneous	146
Gram-Positive Bacteria	
Staphylococcus aureus	146
Streptococcus pneumoniae	147
Enterococcus faecalis	148
Mycobacteria	148
Clinical Impact of Bacterial Resistance to Quinolones	149
Prevalence of Quinolone Resistance	149
Fluoroquinolone Resistance in Hospital Practice	149
Fluoroquinolone Resistance in Community-Acquired Infections	151
Quinolone Use and Emergence of Resistance	155
References	156

5 Pharmacokinetics and Pharmacodynamics of the Fluoroquinolones

Myo-Kyoung Kim and Charles H. Nightingale

Introduction	170
Basic Concepts of Pharmacokinetics and Pharmacodynamics	170
Pharmacokinetics	171
Absorption	172
Distribution	174
Elimination	179
Special Population	181
Drug Interactions	182

Contents

Pharmacodynamics	185
Bactericidal Activity: Time-Kill Curves	185
Pharmacodynamic Surrogate Markers and Clinical Outcome	186
Post-Antibiotic Effects	188
Conclusion	191
References	191

6 Use of Quinolones in Urinary Tract Infection and Prostatitis

Lindsay E. Nicolle

Introduction	203
Urinary Tract Infection	204
Pharmacology	207
Microbiology	207
Clinical Studies	209
Limitations of Available Studies	209
Acute Uncomplicated Urinary Infection	209
Acute Nonobstructive Pyelonephritis	213
Complicated Urinary Infection	214
Bacterial Prostatitis	215
Conclusion	218
References	218

7 Use of the Quinolones in Sexually Transmitted Diseases

Richard P. DiCarlo and David H. Martin

Introduction	
Gonococcal Infections	
Background	229
In-Vitro Activity of Quinolones against Neisseria gonorrhoeae	230
Clinical Studies	230
Resistance of N. gonorrhoeae to the Quinolones	233
Chlamydia trachomatis	235
Background	235
In-Vitro Activity of Quinolones against C. trachomatis	235
Clinical Studies	235
Pelvic Inflammatory Disease	
Chancroid	239
Background	239
In-Vitro Activity of Quinolones against Haemophilus ducreyi	239
Clinical Studies	240
Donovanosis	241
Bacterial Vaginosis	241

Special Toxicity Considerations When Quinolones Are	
Used for Treating Sexually Transmitted Diseases	242
Conclusion	243
References	243

8 Treatment of Respiratory Infections with Quinolones

Paul B. Iannini, Michael S. Niederman, and Vincent T. Andriole

Introduction	255
Clinical Issues in the Therapy of Respiratory Infection	257
Community-Acquired Pneumonia	257
Hospital-Acquired Pneumonia	260
Acute Exacerbations of Chronic Bronchitis	261
Pharmacological Advantages for the Use of Quinolones	
in Respiratory Infection	262
Penetration into Lung Tissue	262
Mechanism of Killing	265
Microbiologic Advantages of Quinolones for	
Respiratory Infection	267
Activity against Common Respiratory Pathogens	268
Clinical Efficacy of Quinolones for the Therapy of	
Respiratory Tract Infections	271
Community-Acquired Pneumonia	271
Hospital-Acquired Pneumonia	274
Acute Exacerbations of Chronic Bronchitis	275
Conclusion	276
References	277

9 Use of Quinolones in Surgery and Obstetrics and Gynecology

John Weigelt, Karen Brasel, and Sebastian Faro

Introduction	285
Surgical Wound Prophylaxis	286
Soft Tissue Infection	288
Intraabdominal Infection	289
Gynecologic Infections	291
Postoperative Pelvic Infections	293
Pelvic Inflammatory Disease	294
Upper Genital Tract Infection	295
Pregnancy	296
Conclusion	297
References	297

10 Use of the Quinolones for Treatment and Prophylaxis of Bacterial Gastrointestinal Infections

Davidson H. Hamer and Sherwood L. Gorbach

Introduction	304
Pharmacology	304
Microbiology	304
Effects on Human Intestinal Microflora	305
Clinical Studies	305
Empirical Therapy of Acute Diarrhea	305
Traveler's Diarrhea	308
Nontyphoidal Salmonellosis	309
Typhoid Fever	310
Shigellosis	312
Cholera and Other Vibrios	314
Campylobacter	315
Antimicrobial Resistance to Quinolones	316
Conclusion	317
References	318

11 Use of the Quinolones in Treatment of Bacterial Meningitis

Rodrigo Hasbun and Vincent J. Quagliarello

Kenneth V. I. Rolston

Introduction	325
Pharmacology	326
In-Vitro Activity of Quinolones against Meningeal Pathogens	326
CSF Penetration of the Quinolones in Vivo	328
Microbiology	335
Studies of Clinical Efficacy	336
Case Reports	336
Chemoprophylaxis of Meningococcal Meningitis	336
Clinical Trial of Trovafloxacin	338
Conclusion	339
References	339

12 Use of the Quinolones in Immunocompromised Patients

Introduction	343
Risk Factors and Associated Infections	344

Contents

Rationale for Fluoroquinolone Use	346
Effect of Fluoroquinolones on Endogenous Microflora	347
Infection Prevention in Afebrile Neutropenic Patients	348
Empiric Therapy in Febrile Neutropenic Patients	350
Risk-Based Therapy for Febrile Neutropenia	352
Treatment of Specific Infections	354
Legionellosis	354
Mycobacterial Infections	356
Miscellaneous Infections	358
Conclusion	359
References	360

13 Use of the Quinolones in Skin and Skin Structure (Osteomyelitis) and Other Infections

Introduction	371
Skin and Soft Tissue Infection	372
Pharmacology	373
Microbiology	373
Clinical Studies	374
Bone and Joint Infection	378
Osteomyelitis	378
Pharmacology	379
Microbiology	380
Clinical Studies	382
Septic Arthritis	388
Conclusion	389
References	390

14 Safety Overview: Toxicity, Adverse Effects, and Drug Interactions

Ralf Stahlmann and Hartmut Lode

Adolf W. Karchmer

Introduction	398
Toxicity of Quinolones (Studies in Animals)	399
General Remarks	399
Effects on Connective Tissue Structures (Cartilage, Tendon)	400
Neurotoxicity	404
Phototoxicity, Photomutagenicity, and Photocarcinogenicity	405

Contents

Nephrotoxicity	406
Ocular Toxicity	407
Cardiotoxicity	408
Reproductive and Developmental Toxicity	408
Mutagenicity and Carcinogenicity	411
Adverse Effects of Fluoroquinolones in Clinical Studies	413
Adverse Effects of Fluoroquinolones	413
Adverse Effects Observed in Preregistration Clinical Trials	420
Adverse Effects Observed in Comparative Double-Blind Studies	429
Drug Interactions	433
Influence of pH and Magnesium on Antibacterial Activity of	
Quinolones in Vitro	434
Interactions between Quinolones and Antacids	434
Influence of Breakfast or Dairy Products on the	
Bioavailability of Quinolones	436
Interactions in Renal Elimination	438
Interactions between Quinolones and Theophylline	438
Interactions between Quinolones and Caffeine	440
Interactions with Digoxin	440
Interactions between Quinolones and Other Drugs	441
References	442

15 Use of the Quinolones in Pediatrics

Urs B. Schaad	
Introduction	455
Animal Data	456
Quinolone Arthropathy	456
Histopathology	457
Possible Mechanisms	458
Tendopathy	458
Pharmacokinetics	460
Clinical Experiences	460
Tolerability	460
Development of Resistance	461
Quinolone-Associated Arthralgia	462
Studied Indications	463
Newest Compounds	467
Recommendations	468
Conclusion	468
References	469

16 The Quinolones: Prospects

Vincent T. Andriole

Introduction	477
Molecular Mechanisms of the Quinolones: Key Discoveries	478
Microbiology	480
Pharmacokinetics	481
Clinical Uses	482
Adverse Events	483
Quinolones: Future Developments	486
Current Quinolone Status and Classification	487
Conclusion	490
References	491

Index

497

This Page Intentionally Left Blank

CONTRIBUTORS

Numbers in parentheses indicate the pages on which the author's contribution begin.

VINCENT T. ANDRIOLE (255, 477), Yale University School of Medicine, New Haven, Connecticut 06520-8022

PETER BALL (1), School of Biomedical Sciences, University of St. Andrews, St. Andrews, Fife KY16 9AL, Scotland, United Kingdom

KAREN BRASEL (285), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

KATHERINE E. BRIGHTY (33), Department of Medicinal Chemistry, Central Research Division, Pfizer Inc., Groton, Connecticut 06340

RICHARD P. DICARLO (227), Department of Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana 70112

SEBASTIAN FARO (285), Department of Obstetrics and Gynecology, Rush Medical College, Rush Presbyterian and St. Luke's Medical Center, Rush University, Chicago, Illinois 60612

THOMAS D. GOOTZ (33), Department of Respiratory, Allergy, Immunology, Inflammation, and Infectious Diseases, Central Research Division, Pfizer Inc., Groton, Connecticut 06340

SHERWOOD L. GORBACH (303), Department of Community Health, Tufts University School of Medicine, Boston, Massachusetts 02111

DAVIDSON H. HAMER (303), Division of Geographic Medicine and Infectious Diseases, Department of Medicine, New England Medical Center, Boston, Massachusetts 02111

RODRIGO HASBUN (325), Tulane University School of Medicine, Section of Infectious Diseases, New Orleans, Louisiana 70118

PAUL B. IANNINI (255), Department of Medicine, Danbury Hospital, Danbury, Connecticut 06810, and Yale University School of Medicine, New Haven, Connecticut 06520

ADOLF W. KARCHMER (371), Division of Infectious Diseases, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215

MYO-KYOUNG KIM (169), Department of Pharmacy and Division of Infectious Disease, Hartford Hospital, Hartford, Connecticut 06102-5037

ANNA KING (99), Department of Microbiology, United Medical and Dental School of Guy's and St. Thomas' Hospitals, St. Thomas' Hospital, London SE1 7EH, United Kingdom

THILO KÖHLER (139), Department of Genetics and Microbiology, University of Geneva, 1211 Geneva, Switzerland

HARTMUT LODE (397), Department of Chest and Infectious Diseases, Hospital Zehlendorf, Heckeshorn Lung Clinic, 14109 Berlin, Germany

DAVID H. MARTIN (227), Department of Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana 70112

LINDSAY E. NICOLLE (203), Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada

MICHAEL S. NIEDERMAN (255), Division of Pulmonary and Critical Care Medicine, Winthrop-University Hospital, Mineola, New York 11501, and Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794

CHARLES H. NIGHTINGALE (169), Office of Research Administration, Hartford Hospital, Hartford, Connecticut 06102-5037

JEAN-CLAUDE PECHÈRE (139), Department of Genetics and Microbiology, University of Geneva, 1211 Geneva, Switzerland **IAN PHILLIPS** (99), Department of Microbiology, United Medical and Dental School of Guy's and St. Thomas' Hospitals, St. Thomas' Hospital, London SE1 7EH, United Kingdom

VINCENT J. QUAGLIARELLO (325), Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022

KENNETH V. I. ROLSTON (343), Department of Medical Specialties, Section of Infectious Diseases, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030

URS B. SCHAAD (455), Department of Pediatrics, University of Basel, 4058 Basel, Switzerland

KEVIN SHANNON (99), Department of Microbiology, United Medical and Dental School of Guy's and St. Thomas' Hospitals, St. Thomas' Hospital, London SE1 7EH, United Kingdom

RALF STAHLMANN (397), Department of Pharmacology and Toxicology, Institute of Clinical Pharmacology and Toxicology, University Hospital Benjamin Franklin, Freie Universität Berlin, 14195 Berlin, Germany

JOHN WEIGELT (285), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 This Page Intentionally Left Blank

PREFACE

Substantial pr ogress has been made in the development of newer quinolones sin ce the last edition of *The Quinolones* was published. This p rogress occurred because the quinolone c lass of antibacterial agents has captur ed the inter est of chem ists, m icrobiologists, pharm acologists, and clinicians. Recent progress in molec ular biology has p rovided new inforanding of struc ture-activity relationship s of mation and a better underst the quinolone nucleus and its radic als. This progress has resulted in the appr oval of a few new compounds w ith impr oved mec hanism of action and the potent ial for delaying the development of r esistance by spec ific bacterial p athogens. A few of the new est quinolones developed r ecent lymoxifloxacin, gatifloxacin, and gemifloxacin—pr ovide a mor e potent spectrum of activity that inc ludes penic illin-resistant pneumococci as well as good activity against anaer obes and decr eased susceptibility to the development of resistance by some b acterial species. Trovafloxac in was the first quinolone that demonstrated impr oved penetrat ion into the c entral nervous system and cer ebrospinal fluid, and early clinical studies demonstrated excellent ef ficacy in pediatric patients with bacterial meningitis. The new est quinolones—moxifloxac in, gat ifloxacin, and gem ifloxacin broaden the c linical ut ility of this c lass of ant imicrobial agents as we enter an era of inc reasing b acterial r esistance to the pr eviously r ecommended "standar d therapy ." During this same period, we have learned much about quinolone toxic ity as it relates to quinolone chemical structure and pharmacokinet ics/pharm acodynam ics in treated p atients. Hopefully this knowledge will p rovide safer molecules for use in patients.

The excellent and very recent progress that has occurred warranted an update on the quinolones. This edition is intended to provide the newest and most cogent information on the quinolones—all of it readily available in one volume. Once again, I am much indebted to my colleagues, each of whom contributed thorough reviews on the history, chemistry, and mechanism of action, *in-vitro* properties, mechanisms of bacterial resistance, pharmacokinetics, clinical overview (described in nine separate chapters, including pediatrics), toxicity, adverse effects and drug interactions, and the future prospects of the newer quinolones.

Clearly, our hope is that this work will serve as a ready resource for new and helpful information, and, in so doing, the efforts of my colleagues most certainly will have been worthwhile.

> Vincent T. Andriole Yale University School of Medicine

CHAPTER I

The Quinolones

History and Overview

PETER BALL

Senior Lecturer (Honorary), School of Biomedical Sciences, University of St. Andrews, St. Andrews, Fife KY16 9AL, Scotland, United Kingdom

Introduction
Structure Activity Deletionshing (SADe)
Structure-Activity Relationships (SARS)
Antibacterial Activity
Mode of Action
Spectrum of Activity
Bacterial Resistance to Fluoroquinolones
Clinical Pharmacology
Penetration into Respiratory Tissues
Elimination Pathways
Pharmacodynamics of Quinolones
Clinical Uses
Urinary Tract Infections
Sexually Transmitted Diseases
Respiratory Infections
Gastrointestinal Infections
Skin and Soft Tissue Infections
Bone Infections
Neutropenic Cancer Patients
Prophylaxis
Pharmacoeconomic Aspects of Fluoroquinolone Usage
Use of Fluoroquinolones in Pediatrics
Adverse Drug Reactions
Interactions with Other Drugs
Interactions Reducing Absorption
Metabolic and Inhibitory Interactions
Conclusion
References

INTRODUCTION

The development of quinolone antibacterials, since the discovery of the naphthyridine agent nalidixic acid some 40 years ago [1], has progressed with periods of great clinical innovation, alternating with periods of apparent inactivity following unexpected recognition of rare, but severe, adverse reactions associated with specific agents. Initially, within a decade, the 4-quinolones oxolinic acid and cinoxacin, which had improved activity against a limited range of Gram-negative bacteria, had been synthesized. Parallel developments in Japan had yielded 7-piperazine-substituted compounds, such as pipemidic acid, which had limited activity against *Pseudomonas aeruginosa*. However, the breakthrough to broadspectrum activity waited a further 10 years before fluorination, primarily at the 6-position, resulted in the fluoroquinolones. It is difficult to overestimate the clinical impact of the development of these agents.

Since the mid-1980s, the fluoroquinolones have become a major group of synthetic antibiotics with activity that ranges from the Enterobacteriaceae and opportunists such as *Pseudomonas aeruginosa*, to Gram-positive pathogens, including streptococci and staphylococci. These changes resulted in agents—for example, ciprofloxacin and ofloxacin (later the levo-isomer levofloxacin)—that are applicable across a broad range of indications, including those involving the genitourinary, respiratory, and gastrointestinal tracts, skin and soft tissues, and other structures. In most bodily tissues and fluids, the fluoroquinolones are characterized by excellent penetration and therapeutic ratios. Ciprofloxacin and ofloxacin revolutionized the management of many conditions previously amenable only to intravenous therapy or in which management has been compromised by bacterial resistance to standard agents, such as the β -lactams. Important examples include pyelonephritis, enteric fevers, prostatic infections, pulmonary exacerbations of cystic fibrosis, and nosocomial pneumonias.

The next significant advance occurred in the early 1990s with the synthesis of temafloxacin, which had four- to eightfold greater activity against *Streptococcus pneumoniae* and good activity against anaerobes, such as the *Bacteroides* and *Prevotella* spp. However, unexpected toxicity, in the form of hemolytic uraemic syndrome [2], resulted in its withdrawal only months after launch. In addition, the development of several other compounds with even greater anti-Gram-positive potency, notably sparfloxacin, sitafloxacin, and Bay 3118, has been either delayed or discontinued due to an unacceptable incidence of phototoxicity (and other adverse effects). By the mid-1990s, clinical development appeared to have halted, although molecules with differing sidechains and laboratory activity continued to be synthesized.

However, optimism again increased with the discovery of trovafloxacin, clinafloxacin, and grepafloxacin, only to be dampened at the end of the decade

by their abrupt withdrawal or suspension due to rare but severe adverse effects, including hepatotoxicity (trovafloxacin), significant QT prolongation and associated cardiac deaths (grepafloxacin), and serious phototoxicity and hypoglycemia (clinafloxacin). All of these agents had significantly greater potency against Gram-positive species, notably *S. pneumoniae*, and in the case of trovafloxacin at least proved highly clinically effective in pneumococcal infections. At a time when burgeoning global multidrug resistance among pneumococci had begun to compromise traditional therapy, this left a considerable hiatus in the range of potential alternatives to penicillin and macrolides.

Fortunately, the 8-methoxyquinolones moxifloxacin and gatifloxacin, which are highly potent against S. pneumoniae (10-fold greater than the earlier secondgeneration agents), clinically effective, and appear free from either significant or unexpected toxicity, have filled this therapeutic vacuum. Their proven activity against S. pneumoniae, coupled with maintained high potency against Haemophilus influenzae and Moraxella catarrhalis, and excellent penetration into respiratory tissues, including the intracellular habitat of *Chlamydia* and *Legionella* spp., suggests that, where ciprofloxacin was considered by many to be inappropriate for respiratory infections, 8-methoxyquinolone derivatives will now become agents of choice. They appear to limit emergence of resistance in Gram-positive species, which could prove a major advantage, compared with levofloxacin, which has also proven surprisingly clinically effective in respiratory infections despite a pneumococcal MIC typical of earlier second-generation agents. Further progress includes continued development of the naphthyridone subclass, notably gemifloxacin, which is characterized by a further 10-fold increase in anti-pneumococcal potency. Clinical trial results are awaited with interest.

The fluoroquinolones and their precursors have a number of predictable structure–activity and structure–adverse effect relationships relating to nuclear and sidechain configurations. Thus, design of new molecules can avoid many of the problems that have characterized previous members of the group. It may be anticipated that further modifications to the molecular structure will improve spectrum and activity while reducing the incidence of adverse effects.

STRUCTURE-ACTIVITY RELATIONSHIPS (SARs)

The 1,8 naphthyridines, 4-quinolones, cinnolines. fluoroquinolones, and fluorinated naphthyridones, together with their important sidechain substituent modifications and resultant structure–activity relationships are summarized in Table I. Modifications to the nucleus converting the naphthyridine nitrogen in the 8-position to a carbon reduced adverse reactions and increased activity against Gram-positive cocci, including both streptococci and *Staphylococcus aureus*, whereas either piperazine or other *N*-cyclic substitutions at the 7-position significantly increased potency against Gram-negative bacteria, including *P*.

Structure	Name		Antibacterial activity	Pharmacokinetics	Indications/comments			
First-generation compounds (often	all included as 4-q	uinolones)						
1,8 naphthyridine (carboxylic acid) 7-methyl 7-pyrrole	Nalidixic acid Piromidic acid		Enterobacteria only, no significant anti-Gram- positive activity	Orally absorbed, poor to moderate tissue penetration	UTI, shigellosis			
1,2-cinnoline (carboxylic acid)	Cinoxacin							
4-quinolone (carboxylic acid)	Oxolinic acid							
7-piperazine (pyrido-pyrimidine)	Pipemidic acid		P. aeruginosa added					
6,7,8 sidechain substituents	Name	N-1 sidechain	Antibacterial activity	Pharmacokinetics	Indications/comments			

TABLE I A Chemical and Functional Classification of Quinolones and Fluoroquinolones

Second-generation compounds (IIA)

A. Fluoroquinolones with enhanced but predominantly Gram-negative activity

6-Fluoro	Flumequine	-	Gram-negative: less active than piperazinyl derivatives	Improved absorption	Limited to UTI
6-Fluoro-7-piperazinyl	Ciprofloxacin Pefloxacin Norfloxacin Ofloxacin (Levofloxacin: Rufloxacin	Cyclopropyl Ethyl Ethyl 1-8 (O) cyclic ring L-isomer) 1-8 (S) cyclic ring	Enhanced anti-Gram nega- tive potency, including <i>P. aeruginosa</i> plus some limited anti-Gram- positive activity	High absorption, ++ tissue penetration, variable elimination (renal/ metabolic) with moderate to long T/2	UTI, STD, enteric infec- tions, RTI (not 1° pneu- mococcal), invasive Gram-negative infec- tions: osteomyelitis, skin and soft tissue, etc.